• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    State-of-Health and State-of-Charge Estimation in Electric Vehicles Batteries: A Survey on Machine Learning Approaches

    Icon
    View/Open
    State-of-Health_and_State-of-Charge_Estimation_in_Electric_Vehicles_Batteries_A_Survey_on_Machine_Learning_Approaches.pdf (8.925Mb)
    Date
    2024
    Author
    Haraz, Aya
    Abualsaud, Khalid
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    Precise estimation of both state-of-charge (SoC) and state-of-health (SoH) is crucial for optimizing electric vehicle (EV) performance and enhancing the battery lifetime, safety, and reliability, where machine learning (ML) plays a vital role in this regard. While existing surveys explore ML applications in EVs, they often need to address ML approaches for SoC and SoH estimation. This paper bridges this gap by comprehensively reviewing how ML is utilized for SoC and SoH estimation, analyzing their strengths and weaknesses across different battery chemistries. Our review offers a systematic breakdown of critical areas: fundamental concepts and functionalities of prominent ML techniques for estimating SoC and SoH, a comparative evaluation of ML techniques applied to diverse EV battery types, an exploration of SoC and SoH estimation using modeling approaches within EV battery systems, and the critical role of dataset quality and model evaluation criteria. Moreover, this paper addresses ML tools developed for lithium-ion batteries (LiBs), image processing applications in EV batteries, and an in-depth investigation of the system model for ML-based SoH and SoC estimation. Furthermore, we present key concepts and methods for SoH and SoC estimation utilizing ML, compare input features, metrics, hyperparameters, and datasets, and demonstrate ML-based system models for EV battery estimation. By conducting this thorough analysis, we aim to close the existing gap and stimulate future progress in ML for SoH and SoC estimation, primarily focusing on LiBs across different EV applications.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3486989
    http://hdl.handle.net/10576/68784
    Collections
    • Computer Science & Engineering [‎2496‎ items ]
    • Electrical Engineering [‎2883‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video