• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble Learning for Precise State-of-Charge Estimation in Electric Vehicles Lithium-Ion Batteries Considering Uncertainty

    Thumbnail
    View/Open
    Ensemble_Learning_for_Precise_State-of-Charge_Estimation_in_Electric_Vehicles_Lithium-Ion_Batteries_Considering_Uncertainty.pdf (1.737Mb)
    Date
    2025
    Author
    Haraz, Aya
    Abualsaud, Khalid
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    Accurate state-of-charge (SoC) estimation is crucial for enhancing the performance, longevity, safety, and reliability of lithium-ion batteries (LiBs) in electric vehicles (EVs). This study presents a comprehensive machine learning (ML)-based approach for SoC estimation of EV LiBs, addressing the challenges of model reliability, uncertainty, and real-world data variability. To ensure the model's robustness and generalizability, preprocessing techniques, including normalization and scaling, were employed alongside rigorous cross-validation methods. A well-structured ML pipeline was developed to integrate these processes, optimizing the entire model development cycle for efficiency and practical implementation. In the ML pipeline, we utilized Extra Trees Regressor (ETR) and Light Gradient Boosting Machine (LightGBM) and proposed an ensemble model, combining the strengths of ETR and LightGBM, namely ETR-GBM. We benchmarked the model's performance against other ML models, such as CatBoost and Random Forest (RF). Under uncertain conditions, the proposed model emphasized its reliability and robustness, and its conclusions underscored the efficacy of the SoC estimation approach. The ETR-GBM consistently outperforms the individual models (ETR, LightGBM, XGBoost, CatBoost, Support Vector Regression (SVR), Random Forest (RF), and Bayesian) when noise is added to the training dataset. With a noise standard deviation of 0.1, the ETR-GBM demonstrated superior performance, achieving a Root Mean Square Error (RMSE) of 0.41%, surpassing the individual models, which exhibited RMSE values ranging from 0.85% to 0.91%.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2025.3539792
    http://hdl.handle.net/10576/68785
    Collections
    • Computer Science & Engineering [‎2519‎ items ]
    • Electrical Engineering [‎2886‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video