عرض بسيط للتسجيلة

المؤلفAyoub, Houssein H.
المؤلفChemaitelly, Hiam
المؤلفTang, Patrick
المؤلفHasan, Mohammad R.
المؤلفYassine, Hadi M.
المؤلفAl Thani, Asmaa A.
المؤلفCoyle, Peter
المؤلفAl-Kanaani, Zaina
المؤلفAl-Kuwari, Einas
المؤلفKaleeckal, Anvar Hassan
المؤلفLatif, Ali Nizar
المؤلفAbdul-Rahim, Hanan F.
المؤلفNasrallah, Gheyath K.
المؤلفAl-Kuwari, Mohamed Ghaith
المؤلفButt, Adeel A.
المؤلفAl-Romaihi, Hamad Eid
المؤلفAl-Thani, Mohamed H.
المؤلفAl-Khal, Abdullatif
المؤلفBertollini, Roberto
المؤلفAbu-Raddad, Laith J.
تاريخ الإتاحة2025-12-01T05:46:17Z
تاريخ النشر2025-12-31
اسم المنشورPublic Health
المعرّفhttp://dx.doi.org/10.1016/j.puhe.2025.106016
الاقتباسAyoub, Houssein H., Hiam Chemaitelly, Patrick Tang, Mohammad R. Hasan, Hadi M. Yassine, Asmaa A. Al Thani, Peter Coyle et al. "Estimating SARS-CoV-2 infection incidence and detection rates: Demonstrating a novel surveillance method." Public Health 249 (2025): 106016.
الرقم المعياري الدولي للكتاب00333506
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0033350625004627
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68905
الملخصObjectivesAssessing the cumulative incidence of infection conventionally relies on documented infections or serological surveys, both of which have limitations. This study introduces a novel and practical method leveraging testing variation in a population to estimate SARS-CoV-2 infection rates in the population of Qatar. Study designCohort study and mathematical modeling. MethodsA cohort study was conducted from February 28, 2020, to March 04, 2024, to derive testing rates and estimate cumulative incidence of documented infection and hazard rates of documented infection in different testing groups. A deterministic mathematical model, applied to the cohort study data, was employed to simulate infection transmission, testing and infection documentation, and estimate the cumulative incidence of documented and undocumented infections, along with the infection detection rate. ResultsAt the conclusion of the pre-Omicron phase, the model-estimated cumulative incidence of documented infection, undocumented infection, and all infections was 9.8 %, 29.7 %, and 39.5 %, respectively. By the end of the first-Omicron wave, cumulatively from the onset of the pandemic, these figures rose to 16.9 %, 56.3 %, and 73.2 %, and in the post-first Omicron phase, to 18.8 %, 77.9 %, and 96.7 %, respectively. The infection detection rate in the population was 24.9 %, 21.0 %, and 9.1 % in each of the pre-Omicron phase, first-Omicron wave, and post-first Omicron phase, respectively. Uncertainty and sensitivity analyses confirmed these results. ConclusionsLeveraging readily available testing data, the introduced method was validated in a real-world setting and has the potential for diverse applications to enhance infectious disease surveillance for both emerging and endemic infections.
اللغةen
الناشرElsevier
الموضوعIncidence
Detection rate
Surveillance
Mathematical model
SARS-CoV-2
العنوانEstimating SARS-CoV-2 infection incidence and detection rates: Demonstrating a novel surveillance method
النوعArticle
رقم المجلد249
Open Access user License http://creativecommons.org/licenses/by/4.0/
ESSN1476-5616
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة