عرض بسيط للتسجيلة

المؤلفIbrahim, Mohammed
المؤلفAl-Kubaise, Khamis
المؤلفAlkapti, Ali
المؤلفAlmusa, Abdullah
المؤلفAbdelaziz, Osama
المؤلفAl-Maadeed, Somaya
المؤلفSadasivuni, Kishor Kumar
تاريخ الإتاحة2025-12-03T05:08:02Z
تاريخ النشر2024
اسم المنشور2024 IEEE 21st International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT, HONET 2024
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/HONET63146.2024.10822939
الاقتباسM. Ibrahim et al., "Classification of Animal Species Using a Deep Neural Network-Based Feature Extraction Method," 2024 IEEE 21st International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET), Doha, Qatar, 2024, pp. 130-134, doi: 10.1109/HONET63146.2024.10822939.
الترقيم الدولي الموحد للكتاب 979-835037807-8
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68974
الملخصThis study presents an innovative approach to animal classification and recognition utilizing machine learning and deep learning methodologies. Leveraging advanced algorithms, the proposed system achieves remarkable accuracy in identifying diverse animal species. By integrating sophisticated image processing techniques, the system enhances image quality, improving overall performance. The research demonstrated that the SVM model combined with deep neural network-based feature extraction achieved the highest accuracy of 95.65%. This paper represents a significant stride toward improving the precision and efficiency of animal classification, offering promising applications in biodiversity conservation and ecological monitoring by using advanced feature extraction approach with deep learning.
راعي المشروعThis work was supported by Qatar National Research Fund under grant no. MME03-1226-210042. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرIEEE
الموضوعAnimal Recognition
Computer Vision
Deep Learning
Feature Extraction
KNN
العنوانClassification of Animal Species Using a Deep Neural Network-Based Feature Extraction Method
النوعConference
الصفحات130-134
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة