Evaluation of the Biological Effects of Exposures to Magnetic Resonance Imaging on Single-Strand DNA: An In-vivo Study
Date
2024-05-01Author
Shaheen, Ramziyah MustafaRazak, Nik Noor Ashikin Nik Ab
Radhi, Muhammad Mizher
Suardi, Nursakinah Binti
Mohammed, Mustapha
Metadata
Show full item recordAbstract
Introduction: Magnetic resonance imaging (MRI) is a powerful diagnostic technique used to acquire detailed information on the structure and function of the body’s organs. Data on the extent of genetic damage following exposure to electromagnetic fields in MRI is variable, necessitating further evidence. This study aims to examine the biological effect of exposure to MRI at various magnetic strengths on the DNA single-strand. Methods: The study was an in-vivo non-randomized controlled experiment involving New Zealand rabbits (n=39, males) scanned using three different MRI strengths (0.5, 1.5 and 3.0 T) and at different time intervals (10, 20, 30, and 40 minutes). The alkaline comet assay was used to study DNA damage by quantifying single-strand breaks. In addition, tail length (TL), tail moment (TM), and the fraction of total DNA in the tail were evaluated. Results: The DNA single-strand breaks were significant for all tested parameters in both MRI 1.5 T (p<0.01) and 3.0 T (p<0.001). In addition, 3.0 T for 40 minutes had the most comet tails and tail moment (13.87), resulting in greater %DNA damage (mean=22.37). Exposure to 0.5 T was found to be only significant at 30 and 40 minutes (p<0.001). Conclusion: Higher MRI strength for a longer duration resulted in a significant increase in DNA single-strand breaks. Understanding the interaction between the magnetic fields generated by MRI and DNA will optimize safe and effective MRI scanning in both patients and healthy individuals.
Collections
- QU Health Research [152 items ]

