• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • QU Health
  • QU Health Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • QU Health
  • QU Health Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of the Biological Effects of Exposures to Magnetic Resonance Imaging on Single-Strand DNA: An In-vivo Study

    View/Open
    2024052916095801_MJMHS_0953.pdf (417.6Kb)
    Date
    2024-05-01
    Author
    Shaheen, Ramziyah Mustafa
    Razak, Nik Noor Ashikin Nik Ab
    Radhi, Muhammad Mizher
    Suardi, Nursakinah Binti
    Mohammed, Mustapha
    Metadata
    Show full item record
    Abstract
    Introduction: Magnetic resonance imaging (MRI) is a powerful diagnostic technique used to acquire detailed information on the structure and function of the body’s organs. Data on the extent of genetic damage following exposure to electromagnetic fields in MRI is variable, necessitating further evidence. This study aims to examine the biological effect of exposure to MRI at various magnetic strengths on the DNA single-strand. Methods: The study was an in-vivo non-randomized controlled experiment involving New Zealand rabbits (n=39, males) scanned using three different MRI strengths (0.5, 1.5 and 3.0 T) and at different time intervals (10, 20, 30, and 40 minutes). The alkaline comet assay was used to study DNA damage by quantifying single-strand breaks. In addition, tail length (TL), tail moment (TM), and the fraction of total DNA in the tail were evaluated. Results: The DNA single-strand breaks were significant for all tested parameters in both MRI 1.5 T (p<0.01) and 3.0 T (p<0.001). In addition, 3.0 T for 40 minutes had the most comet tails and tail moment (13.87), resulting in greater %DNA damage (mean=22.37). Exposure to 0.5 T was found to be only significant at 30 and 40 minutes (p<0.001). Conclusion: Higher MRI strength for a longer duration resulted in a significant increase in DNA single-strand breaks. Understanding the interaction between the magnetic fields generated by MRI and DNA will optimize safe and effective MRI scanning in both patients and healthy individuals.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194934949&origin=inward
    DOI/handle
    http://dx.doi.org/10.47836/mjmhs.20.3.2
    http://hdl.handle.net/10576/69480
    Collections
    • QU Health Research [‎152‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video