• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating Turning Movements at Signalized Intersections Using Artificial Neural Networks

    Thumbnail
    Date
    2018-06-14
    Author
    Ghanim, Mohammad Shareef
    Shaaban, Khaled
    Metadata
    Show full item record
    Abstract
    Intersection turning movements' counts are critical input data for traffic studies, analysis, and forecasting. These types of counts are often used to analyze operational performance of signalized intersections under different traffic conditions and peak hours. There are several methods to collect these movements, such as manual counts and video image processing. Traffic studies require turning movement counts although they may not be readily available, especially in the case of traffic forecasting or when seasonal adjustment factors are applied. In these cases, only approach volumes might be available and turning movements are assumed using different techniques to balance the inbound and outbound traffic. Nonetheless, these techniques require initial conditions, and their outcomes are highly sensitive to the initial assumptions. In this paper, a robust and practical method is developed. The turning movement counts at 691 four-leg, and 156 three-leg signalized intersections are analyzed to develop an accurate and reliable turning movement estimation model. A total of 4,175 hours of turning movement counts are used. An artificial neural networks (ANN) model is trained to analyze the relationship between the approach volumes and the corresponding turning movements. The results show that the developed ANN model can be utilized to predict turning movements at a high level of accuracy.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2018.2842147
    http://hdl.handle.net/10576/11105
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video