• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating Turning Movements at Signalized Intersections Using Artificial Neural Networks

    Thumbnail
    التاريخ
    2018-06-14
    المؤلف
    Ghanim, Mohammad Shareef
    Shaaban, Khaled
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Intersection turning movements' counts are critical input data for traffic studies, analysis, and forecasting. These types of counts are often used to analyze operational performance of signalized intersections under different traffic conditions and peak hours. There are several methods to collect these movements, such as manual counts and video image processing. Traffic studies require turning movement counts although they may not be readily available, especially in the case of traffic forecasting or when seasonal adjustment factors are applied. In these cases, only approach volumes might be available and turning movements are assumed using different techniques to balance the inbound and outbound traffic. Nonetheless, these techniques require initial conditions, and their outcomes are highly sensitive to the initial assumptions. In this paper, a robust and practical method is developed. The turning movement counts at 691 four-leg, and 156 three-leg signalized intersections are analyzed to develop an accurate and reliable turning movement estimation model. A total of 4,175 hours of turning movement counts are used. An artificial neural networks (ANN) model is trained to analyze the relationship between the approach volumes and the corresponding turning movements. The results show that the developed ANN model can be utilized to predict turning movements at a high level of accuracy.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2018.2842147
    http://hdl.handle.net/10576/11105
    المجموعات
    • الهندسة المدنية [‎892‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video