• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding the structure-function relationship of HPRT1 missense mutations in association with Lesch-Nyhan disease and HPRT1-related gout by in silico mutational analysis.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-02-01
    Author
    Agrahari, Ashish Kumar
    Krishna Priya, M
    Praveen Kumar, Medapalli
    Tayubi, Iftikhar Aslam
    Siva, R
    Prabhu Christopher, B
    George Priya Doss, C
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The nucleotide salvage pathway is used to recycle degraded nucleotides (purines and pyrimidines); one of the enzymes that helps to recycle purines is hypoxanthine guanine phosphoribosyl transferase 1 (HGPRT1). Therefore, defects in this enzyme lead to the accumulation of DNA and nucleotide lesions and hence replication errors and genetic disorders. Missense mutations in hypoxanthine phosphoribosyl transferase 1 (HPRT1) are associated with deficiencies such as Lesch-Nyhan disease and chronic gout, which have manifestations such as arthritis, neurodegeneration, and cognitive disorders. In the present study, we collected 88 non-synonymous single nucleotide polymorphisms (nsSNPs) from the UniProt, dbSNP, ExAC, and ClinVar databases. We used a series of sequence-based and structure-based in silico tools to prioritize and characterize the most pathogenic and stabilizing or destabilizing nsSNPs. Moreover, to obtain the structural impact of the pathogenic mutations, we mapped the mutations to the crystal structure of the HPRT protein. We further subjected these mutant proteins to a 50 ns molecular dynamics simulation (MDS). The MDS trajectory showed that all mutant proteins altered the structural conformation and dynamic behavior of the HPRT protein and corroborated its association with LND and gout. This study provides essential information regarding the use of HPRT protein mutants as potential targets for therapeutic development.
    DOI/handle
    http://dx.doi.org/10.1016/j.compbiomed.2019.02.014
    http://hdl.handle.net/10576/11375
    Collections
    • Biomedical Sciences [‎809‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video