• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neuropathy Classification of Corneal Nerve Images Using Artificial Intelligence

    Thumbnail
    عرض / فتح
    Tooba Salahuddin_OGS Approved Thesis.pdf (1.813Mb)
    التاريخ
    2019-06
    المؤلف
    Salahuddin, Tooba
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Nerve variations in the human cornea have been associated with alterations in the neuropathy state of a patient suffering from chronic diseases. For some diseases, such as diabetes, detection of neuropathy prior to visible symptoms is important, whereas for others, such as multiple sclerosis, early prediction of disease worsening is crucial. As current methods fail to provide early diagnosis of neuropathy, in vivo corneal confocal microscopy enables very early insight into the nerve damage by illuminating and magnifying the human cornea. This non-invasive method captures a sequence of images from the corneal sub-basal nerve plexus. Current practices of manual nerve tracing and classification impede the advancement of medical research in this domain. Since corneal nerve analysis for neuropathy is in its initial stages, there is a dire need for process automation. To address this limitation, we seek to automate the two stages of this process: nerve segmentation and neuropathy classification of images. For nerve segmentation, we compare the performance of two existing solutions on multiple datasets to select the appropriate method and proceed to the classification stage. Consequently, we approach neuropathy classification of the images through artificial intelligence using Adaptive Neuro-Fuzzy Inference System, Support Vector Machines, Naïve Bayes and k-nearest neighbors. We further compare the performance of machine learning classifiers with deep learning. We ascertained that nerve segmentation using convolutional neural networks provided a significant improvement in sensitivity and false negative rate by at least 5% over the state-of-the-art software. For classification, ANFIS yielded the best classification accuracy of 93.7% compared to other classifiers. Furthermore, for this problem, machine learning approaches performed better in terms of classification accuracy than deep learning.
    DOI/handle
    http://hdl.handle.net/10576/12370
    المجموعات
    • الحوسبة [‎112‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video