• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved human thermal comfort with indoor PCM-Enhanced tiles in living spaces in the arabian gulf

    Thumbnail
    Date
    2018
    Author
    Touma A.A.
    Ouahrani D.
    Metadata
    Show full item record
    Abstract
    Al-Majlis is the living space in residential buildings of the Arabian Gulf, and is where occupants spend most of their time. For this reason, the human thermal comfort in this space is of extreme importance and is often compromised due to hot outdoor weather conditions. In contrast with many thermal discomfort mitigation methods in outdoor environments, which become unadvisable in indoor spaces, this study investigates the effect of adding PCM-enhanced tiles to portions of the indoor envelope on the occupant's thermal comfort and the space cooling energy demand. A simulation model of a space with tight building envelope in Qatar was developed on EnergyPlus with and without the addition of PCM-enhanced tiles. The selected country is a representative location of the Arabian Gulf. Considering different occupant's positions, the addition of the tiles with PCM on their back was found to moderate the mean radiant temperature, operative temperature, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), all of which signify an improvement in the human thermal comfort. Lastly, this change in the indoor envelope was found to save 3.3% of the space daily thermal cooling energy demand during one harsh summer representative day.
    DOI/handle
    http://dx.doi.org/10.1051/e3sconf/20185704001
    http://hdl.handle.net/10576/13033
    Collections
    • Architecture & Urban Planning [‎308‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video