• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Improved Design of High-Resolution Quadratic Time-Frequency Distributions for the Analysis of Nonstationary Multicomponent Signals Using Directional Compact Kernels

    Thumbnail
    Date
    2017
    Author
    Boashash, B.
    Ouelha, Samir
    Metadata
    Show full item record
    Abstract
    This paper presents a new advanced methodology for designing high resolution time-frequency distributions (TFDs) of multicomponent nonstationary signals that can be approximated using piece-wise linear frequency modulated (PW-LFM) signals. Most previous kernel design methods assumed that signals auto-Terms are mostly centered around the origin of the nu ambiguity domain while signal cross-Terms are mostly away from the origin. This study uses a multicomponent test signal for which each component is modeled as a PW-LFM signal; it finds that the above assumption is a very rough approximation of the location of the auto-Terms energy and cross-Terms energy in the ambiguity domain and it is only valid for signals that are well separated in the (t,f) domain. A refined investigation led to improved specifications for separating cross-Terms from auto-Terms in the nu ambiguity domain. The resulting approach first represents the signal in the ambiguity domain, and then applies a multidirectional signal dependent compact kernel that accounts for the direction of the auto-Terms energy. The resulting multidirectional distribution (MDD) approach proves to be more effective than classical methods like extended modified B distribution, S-method, or compact kernel distribution in terms of auto-Terms resolution and cross-Terms suppression. Results on simulated and real data validate the improved performance of the MDD, showing up to 8% gain as compared to more standard state-of-The-Art TFDs.
    DOI/handle
    http://dx.doi.org/10.1109/TSP.2017.2669899
    http://hdl.handle.net/10576/16193
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video