• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Moment invariants for multi-component shapes with applications to leaf classification

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Ben Haj Rhouma, Mohamed
    Žunić, Joviša
    Younis, Mohammed Chachan
    Metadata
    Show full item record
    Abstract
    In this paper we introduce seven new invariants for multi-component shapes, and apply them to the leaf classification problem. One of the new invariants is an area based analogue of the already known boundary based anisotropy measure, defined for the multi-component shapes (Rosin and Žunić, 2011). The other six invariants are completely new. They are derived following the concept of the geometric interpretation (Xu and Li, 2008) of the first two Hu moment invariants (Hu, 1961). All the invariants introduced are computable from geometric moments corresponding to the shape components. This enables an easy and straightforward computation of translation, rotation, and scaling invariants. Also, being area based, the new invariants are robust to noise and mild deformations. Several desirable properties of the new invariants are discussed and evaluated experimentally on a number of synthetic examples. The usefulness of the new multi-component shape invariants, in the shape based object analysis tasks, is demonstrated on a well-known leaf data set.
    DOI/handle
    http://dx.doi.org/10.1016/j.compag.2017.08.029
    http://hdl.handle.net/10576/16288
    Collections
    • Mathematics, Statistics & Physics [‎810‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video