• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Developing a risk prediction model for breast cancer: A Statistical Utility to Determine Affinity of Neoplasm (Sudan-CA Breast)

    Thumbnail
    عرض / فتح
    s40001-017-0277-6.pdf (917.6Kb)
    التاريخ
    2017
    المؤلف
    Salih, Alaaddin M.
    Alam-Elhuda, Dafallah M.
    Alfaki, Musab M.
    Yousif, Adil E.
    Nouradyem, Momin M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Background: Breast cancer risk prediction models are widely used in clinical settings. Although most of the well-known models were designed based on data collected from western population, yet they have been utilized for surveillance purposes in many limited-resource countries. Given the genetic variations in risk factors that exist between different races, we therefore aimed to develop and validate a tool for breast cancer risk assessment among Sudanese women. Methods: Using cross-sectional design, 153 subjects were eligible to participate in our study. Data were collected from the only couple of tertiary centers in Sudan. They underwent multiple logistic regression using purposeful selection method to build the model. Various adjustments were made to determine significant predictors. Overall performance, calibration and discrimination were assessed by R 2, O/E ratio and c-statistic, respectively. Results: Sudan predictors of breast cancer were: Age, menarche, family history, vegetables and fruits weekly servings, and type of cereals that traditional cuisine is made of. Both Nagelkerke R 2 (0.495) and O/E ratio (0.78) were good. c-statistic expressed the excellent discriminatory power of the model (0.864, p < 0.001, 95% CI 0.81-0.92). Conclusions: Our findings suggest that Sudan provides a simple, efficient and well-calibrated tool to predict and classify women's lifetime risks of developing breast cancer. Input from our model could be deployed to guide utilization of the more advanced screening modalities in resource-limited settings to maximize cost effectiveness. Consequently, this might improve the stage at which the diagnosis is usually made. 1 2017 The Author(s).
    DOI/handle
    http://dx.doi.org/10.1186/s40001-017-0277-6
    http://hdl.handle.net/10576/16979
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎810‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video