• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Similarity Group-by Operators for Multi-Dimensional Relational Data

    Thumbnail
    التاريخ
    2016
    المؤلف
    Tang, Mingjie
    Tahboub, Ruby Y.
    Aref, Walid G.
    Atallah, Mikhail J.
    Malluhi, Qutaibah M.
    Ouzzani, Mourad
    Silva, Yasin N.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The SQL group-by operator plays an important role in summarizing and aggregating large datasets in a data analytics stack. While the standard group-by operator, which is based on equality, is useful in several applications, allowing similarity aware grouping provides a more realistic view on real-world data that could lead to better insights. The Similarity SQL-based Group-By operator (SGB, for short) extends the semantics of the standard SQL Group-by by grouping data with similar but not necessarily equal values. While existing similarity-based grouping operators efficiently realize these approximate semantics, they primarily focus on one-dimensional attributes and treat multi-dimensional attributes independently. However, correlated attributes, such as in spatial data, are processed independently, and hence, groups in the multi-dimensional space are not detected properly. To address this problem, we introduce two new SGB operators for multi-dimensional data. The first operator is the clique (or distance-to-all) SGB, where all the tuples in a group are within some distance from each other. The second operator is the distance-to-any SGB, where a tuple belongs to a group if the tuple is within some distance from any other tuple in the group. Since a tuple may satisfy the membership criterion of multiple groups, we introduce three different semantics to deal with such a case: (i) eliminate the tuple, (ii) put the tuple in any one group, and (iii) create a new group for this tuple. We implement and test the new SGB operators and their algorithms inside PostgreSQL. The overhead introduced by these operators proves to be minimal and the execution times are comparable to those of the standard Group-by. The experimental study, based on TPC-H and a social check-in data, demonstrates that the proposed algorithms can achieve up to three orders of magnitude enhancement in performance over baseline methods developed to solve the same problem. 1989-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TKDE.2015.2480400
    http://hdl.handle.net/10576/18429
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎32‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video