• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Empirical Study for PCA- and LDA-Based Feature Reduction for Gas Identification

    Thumbnail
    التاريخ
    2016
    المؤلف
    Akbar, Muhammad Ali
    Ali, Amine Ait Si
    Amira, Abbes
    Bensaali, Faycal
    Benammar, Mohieddine
    Hassan, Muhammad
    Bermak, Amine
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Increasing the number of sensors in a gas identification system generally improves its performance as this will add extra features for analysis. However, this affects the computational complexity, especially if the identification algorithm is to be implemented on a hardware platform. Therefore, feature reduction is required to extract the most important information from the sensors for processing. In this paper, linear discriminant analysis (LDA) and principal component analysis (PCA)-based feature reduction algorithms have been analyzed using the data obtained from two different types of gas sensors, i.e., seven commercial Figaro sensors and in-house fabricated $4 \times 4$ tin-oxide gas array sensor. A decision tree-based classifier is used to examine the performance of both the PCA and LDA approaches. The software implementation is carried out in MATLAB and the hardware implementation is performed using the Zynq system-on-chip (SoC) platform. It has been found that with the $4 \times 4$ array sensor, two discriminant functions (DF) of LDA provide 3.3% better classification than five PCA components, while for the seven Figaro sensors, two principal components and one DF show the same performances. The hardware implementation results on the programmable logic of the Zynq SoC shows that LDA outperforms PCA by using 50% less resources as well as by being 11% faster with a maximum running frequency of 122 MHz. 2001-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2016.2565721
    http://hdl.handle.net/10576/22372
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video