• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images

    No Thumbnail [120x130]
    التاريخ
    2016
    المؤلف
    Sirinukunwattana, Korsuk
    Raza, Shan E Ahmed
    Tsang, Yee-Wah
    Snead, David R. J.
    Cree, Ian A.
    Rajpoot, Nasir M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches have been shown to produce encouraging results on histopathology images in various studies. In this paper, we propose a Spatially Constrained Convolutional Neural Network (SC-CNN) to perform nucleus detection. SC-CNN regresses the likelihood of a pixel being the center of a nucleus, where high probability values are spatially constrained to locate in the vicinity of the centers of nuclei. For classification of nuclei, we propose a novel Neighboring Ensemble Predictor (NEP) coupled with CNN to more accurately predict the class label of detected cell nuclei. The proposed approaches for detection and classification do not require segmentation of nuclei. We have evaluated them on a large dataset of colorectal adenocarcinoma images, consisting of more than 20,000 annotated nuclei belonging to four different classes. Our results show that the joint detection and classification of the proposed SC-CNN and NEP produces the highest average F1 score as compared to other recently published approaches. Prospectively, the proposed methods could offer benefit to pathology practice in terms of quantitative analysis of tissue constituents in whole-slide images, and potentially lead to a better understanding of cancer. 1982-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TMI.2016.2525803
    http://hdl.handle.net/10576/22536
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • No Thumbnail [110x130]

      Self-organized Operational Neural Networks with Generative Neurons 

      Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)
      Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ...
    • No Thumbnail [110x130]

      Real-Time Glaucoma Detection from Digital Fundus Images Using Self-ONNs 

      Devecioglu O.C.; Malik J.; Ince T.; Kiranyaz, Mustafa Serkan; Atalay E.; Gabbouj M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)
      Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later ...
    • No Thumbnail [110x130]

      Operational neural networks 

      Kiranyaz, Mustafa Serkan; Ince T.; Iosifidis A.; Gabbouj M. ( Springer , 2020 , Article)
      Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail