Automated detection of anomalies in sewer closed circuit television videos using proportional data modeling
Abstract
Sewer pipeline condition information is usually collected using closed circuit television (CCTV). Moreover, in order to evaluate the condition of pipeline, data should be processed by a certified operator, which is time consuming, costly, and error prone due to operator's skillfulness or fatigue. Automating the detection of anomalies can reduce time and cost of inspection while ensuring the accuracy and quality of assessment. However, considering various types of defects in sewer pipelines and numerous patterns of each, it seems to be difficult to detect the defects using computer vision techniques. This paper presents an efficient anomaly detection algorithm to support automated detection of sewer defects from data obtained from CCTV inspection videos. In this model Hidden Markov Model (HMM) for proportional data modeling is employed theoretically and its performance of anomaly detection in an example of sewer CCTV videos has been assessed. The algorithm consists of modeling conditions considered as normal and detecting outliers to this model.
DOI/handle
http://hdl.handle.net/10576/22689Collections
- Civil and Environmental Engineering [851 items ]
Related items
Showing items related by title, author, creator and subject.
-
Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection
Boashash B.; Azemi G.; Ali Khan N. ( Elsevier Ltd , 2015 , Article)This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). ... -
Drone-type-Set: Drone types detection benchmark for drone detection and tracking
AlDosari, Khloud; Osman, AIbtisam; Elharrouss, Omar; Al-Maadeed, Somaya; Chaari, Mohamed Zied ( Institute of Electrical and Electronics Engineers Inc. , 2024 , Conference Paper)The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, ... -
Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier
Zabihi, M.; Zabihi, Morteza; Rad, Ali Bahrami; Katsaggelos, Aggelos K.; Kiranyaz, Serkan; Narkilahti, Susanna; Gabbouj, Moncef... more authors ... less authors ( IEEE Computer Society , 2017 , Conference Paper)Atrial Fibrillation (AF) is characterized by chaotic electrical impulses in the atria, which leads to irregular heartbeats and can develop blood clots and stroke. Therefore, early detection of AF is crucial for increasing ...