• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neutralization of MERS coronavirus through a scalable nanoparticle vaccine

    Thumbnail
    View/Open
    s41541-021-00365-w.pdf (1.873Mb)
    Date
    2021-08-24
    Author
    Mohsen, Mona O
    Rothen, Dominik
    Balke, Ina
    Martina, Byron
    Zeltina, Vilija
    Inchakalody, Varghese
    Gharailoo, Zahra
    Nasrallah, Gheyath
    Dermime, Said
    Tars, Kaspars
    Vogel, Monique
    Zeltins, Andris
    Bachmann, Martin F
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    MERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV). In order to produce a vaccine that is readily scalable, we genetically fused the receptor-binding motif (RBM) of MERS-CoV spike protein into the surface of cucumber-mosaic virus VLPs. The employed CuMV-VLPs represent a new immunologically optimized vaccine platform incorporating a universal T cell epitope derived from tetanus toxin (TT). The resultant vaccine candidate (mCuMV-MERS) is a mosaic particle and consists of unmodified wild type monomers and genetically modified monomers displaying RBM, co-assembling within E. coli upon expression. mCuMV-MERS vaccine is self-adjuvanted with ssRNA, a TLR7/8 ligand which is spontaneously packaged during the bacterial expression process. The developed vaccine candidate induced high anti-RBD and anti-spike antibodies in a murine model, showing high binding avidity and an ability to completely neutralize MERS-CoV/EMC/2012 isolate, demonstrating the protective potential of the vaccine candidate for dromedaries and humans.
    DOI/handle
    http://dx.doi.org/10.1038/s41541-021-00365-w
    http://hdl.handle.net/10576/23003
    Collections
    • Biomedical Sciences [‎833‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video