• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • وقائع المنتديات
  • المنتدى والمعرض البحثي السنوي لجامعة قطر
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • وقائع المنتديات
  • المنتدى والمعرض البحثي السنوي لجامعة قطر
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Segmenting Liver Volume for Surgical Analysis

    Thumbnail
    عرض / فتح
    113.pdf (2.662Mb)
    التاريخ
    2021
    المؤلف
    Al-Kababji, Ayman Jamal
    Bensaali, Faycal
    Dakua, Sarada Prasad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Introduction: Almost two million people worldwide die annually due to hepatic-related diseases. Half of these diseases are attributed to cirrhosis and the other half are related to hepatitis and hepatocellular carcinoma (HCC). The liver is also a metastasis hub from adjacent organs. This research aims to create an accurate high-quality delineation of the human liver and prepare them to be 3D printed for medical analysis to help aid medical practitioners in pre-procedural planning. Materials and Methods: Convolutional neural networks (ConvNets) are used to perform the liver tissues delineation. A famous ConvNet, named U-net, is used as the basis benchmark architecture that is also known for its great outcomes in the medical segmentation field. Contrast-enhanced computerized tomography (CT) scans are used from the famous Medical Segmentation Decathlon Challenge (Task 8: Hepatic Vessel), abbreviated as MSDC-T8. It contains 443 CT scans, which is considered the largest dataset that contains both the tumors and vessels ground-truth segmentation. Some researchers also generated the liver masks for this dataset, making it a complete dataset that contains all the relevant tissues' ground-truth masks. Results: Currently, the liver delineation has been successfully done with very high DICE = 98.12% (higher than the state-of-the-art results DICE = 97.61%), where a comparison between two famous schedulers namely, ReduceLRonPlateau and OneCycleLR has been conducted. Moreover, the 3D liver volume creation has also been completed and built via the marching cube algorithm. Conclusions/Future Directions: The developed ConvNet can segment livers with high confidence. The tumor(s) and vessels tissues segmentation are also under investigation now. Moreover, newly devised self-organized neural networks (Self-ONN) look promising and will be investigated soon. Lastly, a GUI will be built so that the medical practitioner can just insert the CT volume and get the 3D liver volume with all the segmented tissues.
    معرّف المصادر الموحد
    https://doi.org/10.29117/quarfe.2021.0100
    DOI/handle
    http://hdl.handle.net/10576/24385
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]
    • Theme 2: Health and Biomedical Sciences [‎80‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video