• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 2: Health and Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pyocyanin pigment from Pseudomonas aeruginosa modulates innate immune defenses in macrophages

    Thumbnail
    View/Open
    247.pdf (956.0Kb)
    Date
    2021
    Author
    Mahgoub, Yasmine
    Arif, Rida
    Zughaier, Susu
    Metadata
    Show full item record
    Abstract
    Background: Pseudomonas aeruginosa is a well-known opportunistic pathogen. The gram-negative bacillus, commonly associated with hospital-acquired infections, utilizes the host's impaired immune responses to establish infection. Of its many virulence factors, pyocyanin is essential for P. aeruginosa to establish its full infectivity. Macrophages act as sentinels of the innate immune system, as well as play other roles in homeostasis, tissue remodeling, and bridging between the innate and adaptive immune systems. Aim: This study aimed to investigate the effects of pyocyanin on macrophage innate immune defenses by assessing the function of macrophages treated with pyocyanin and TLR ligands. Phagocytosis of opsonized zymosan, LPS-induced nitric oxide release and cytokine release were used as measures of functional responses. Results: This study found that pyocyanin inhibited phagocytosis-induced ROS release in a dose-dependent manner and reduced nitric oxide release from macrophages induced with P. aeruginosa LPS. In addition, pyocyanin modulated cytokines and chemokines release from macrophages exposed to P. aeruginosa LPS in a dose-dependent manner. Pyocyanin significantly enhanced IL-1? release as well as several chemokines. Therefore, pyocyanin facilitates Pseudomonas aeruginosa to persevere in the immunocompromised host through modulating macrophage's innate immune defenses. Conclusion: Pyocyanin inhibits macrophage functional defense responses to facilitate Pseudomonas aeruginosa infection.
    URI
    https://doi.org/10.29117/quarfe.2021.0137
    DOI/handle
    http://hdl.handle.net/10576/24422
    Collections
    • Medicine Research [‎1762‎ items ]
    • Theme 2: Health and Biomedical Sciences [‎80‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video