• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cadmium: An Emerging Role in Adipose Tissue Dysfunction

    Thumbnail
    View/Open
    Attia2021_Article_CadmiumAnEmergingRoleInAdipose (1).pdf (941.0Kb)
    Date
    2021-01-01
    Author
    Attia, Sarra Mohammed
    Varadharajan, Kavitha
    Shanmugakonar, Muralitharan
    Das, Sandra Concepcion
    Al-Naemi, Hamda A.
    Metadata
    Show full item record
    Abstract
    Cadmium (Cd) is a toxic heavy metal that is widespread in the environment due to the substantial anthropogenic inputs from the agriculture and industrial sectors. The toxic impact of Cd adversely affects human health and is linked with endocrine disruption, carcinogenicity, diabetes-related diseases, and metabolic disorder. One of the main characterizations of Cd is bioaccumulation where its half-life reaches 40 years with an unknown biological role. Several organs were found to be targets for Cd accumulation such as the liver, kidneys, and adipose tissue. Adipose tissue (AT) is a dynamic organ that plays a significant role in the body’s homeostasis through the maintenance of energy storage. Another vital function for AT is the secretion of adipokines which provides a metabolic cross-talk with the whole body’s organs. Cd is found to adversely impact the function of AT. This includes the disruption of adipogenesis, lipogenesis, and lipolysis. As a consequence, dysfunctional AT has disruptive patterns of adipokines secretions. The main adipokines produced from AT are leptin and adiponectin. Both were found to be significantly declined under the Cd exposure. Additionally, adipose tissue macrophages can produce either anti-inflammatory markers or pro-inflammatory markers depending on the local AT condition. Cadmium exposure was reported to upregulate pro-inflammatory markers and downregulate anti-inflammatory markers. However, the exact mechanisms of Cd’s adverse role on AT structure, function, and secretion patterns of adipokines are not totally clarified. Therefore, in this review, we present the current findings related to Cd detrimental effects on adipose tissues.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114675847&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12403-021-00427-3
    http://hdl.handle.net/10576/27437
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Laboratory Animal Research Center (Research) [‎129‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video