• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of natural gas composition on adsorption in calcite Nanopores: A DFT study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Elbashier E.
    Hussein I.
    Carchini G.
    Kasha A.
    Berdiyorov G.
    Metadata
    Show full item record
    Abstract
    Density functional theory is used to study the adsorption of natural gas components in calcite (10.4) cylindrical nanopores with 1–4 nm diameters. The change of adsorption energy with the diameter of the nanopores is studied for CH4 and CO2 gases. The results of the simulation calculations showed that as the nanopore diameter decreases, the adsorption energy increases exponentially due to the geometry of the smallest pore that increases the affinity of the molecules to the surface. Compared to the flat surface, for both molecules, CH4 and CO2, the interaction energy of the molecule with the nanopore could increase to more than five times depending on pore radius and molecule type. Additionally, in all cases, CO2 has a greater affinity to the surface than CH4; thus, it is more affected by the surface curvature and energy. For methane, adsorption energy on the flat surface is 0.0025 eV/Å2, while on the smallest nanopore, it increases to 0.0139 eV/Å2. On the other hand, the adsorption energy of carbon dioxide has increased from 0.0046 eV/Å2 on the flat surface to 0.0263 eV/Å2 on the smallest nanopore. To estimate the nanopore saturation of the gas, the capacity of the gases’ adsorption was calculated. The nanopores absorbed up to 28 and 24 molecules of CH4 and CO2, respectively, and the adsorption energy decreased to −0.0062 and −0.0075 eV/Å2 for each. Although the nanopore was filled spatially by the molecules, its surface still has an affinity to absorb more gas molecules energetically. These findings could be useful for estimating the adsorbed gas on carbonate rocks.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113277785&doi=10.1016%2fj.apsusc.2021.150940&partnerID=40&md5=16e574c45734f2ef1021cb87f7ce4b58
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2021.150940
    http://hdl.handle.net/10576/30367
    Collections
    • Chemical Engineering [‎1199‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video