• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features

    Thumbnail
    Date
    2021
    Author
    Almohamad A.
    Hasna , Mazen
    Althunibat S.
    Tekbiyik K.
    Qaraqe K.
    Metadata
    Show full item record
    Abstract
    With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed technologies, LoRa stands as a promising solution thanks to its tiny footprint in terms of cost and power consumption. Since the ISM band is usually used for such applications and multiple different systems are allocated in this band, a smart spectrum management and awareness is highly required. In this paper, we propose a convolutional neural network (CNN)-based classifier to identify LoRa spreading factors (SF) and the inter-SF interference. Specifically, in the proposed model LoRa signals are pre-processed using spectral correlation function (SCF) and fast Fourier transform (FFT). We show that using the SCF pre-processed signals for training can attain a better performance as compared to those with FFT pre-processed training data in terms of classification accuracy at a very low signal-to-noise ratio. Furthermore, the proposed model outperforms the related model in literature in terms of accuracy for the FFT and SCF pre-processed signals.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122945783&doi=10.1109%2fICTC52510.2021.9621015&partnerID=40&md5=fdf655733fafa83e8dba26ad2cb35699
    DOI/handle
    http://dx.doi.org/10.1109/ICTC52510.2021.9621015
    http://hdl.handle.net/10576/30442
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review 

      Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)
      This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...
    • Thumbnail

      Time-frequency detection of slowly varying periodic signals with harmonics: Methods and performance evaluation 

      O'Toole J.M.; Boashash B. (2011 , Article)
      We consider the problem of detecting an unknown signal from an unknown noise type. We restrict the signal type to a class of slowly varying periodic signals with harmonic components, a class which includes real signals ...
    • Thumbnail

      Signal content estimation based on the short-term time-frequency Rényi entropy of the S-method time-frequency distribution 

      Saulig, N.; Sucic, V.; Stanković, S.; Orović, I.; Boashash, B. (2012 , Conference)
      A key characteristic of a nonstationary signal, when analyzed in the time-frequency domain, is the signal complexity, quantified as the number of components in the signal. This paper describes a method for the estimation ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video