• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time-frequency detection of slowly varying periodic signals with harmonics: Methods and performance evaluation

    Thumbnail
    Date
    2011
    Author
    O'Toole J.M.
    Boashash B.
    Metadata
    Show full item record
    Abstract
    We consider the problem of detecting an unknown signal from an unknown noise type. We restrict the signal type to a class of slowly varying periodic signals with harmonic components, a class which includes real signals such as the electroencephalogram or speech signals. This paper presents two methods designed to detect these signal types: the ambiguity filter and the time-frequency correlator. Both methods are based on different modifications of the time-frequency-matched filter and both methods attempt to overcome the problem of predefining the template set for the matched filter. The ambiguity filter method reduces the number of required templates by one half; the time-frequency correlator method does not require a predefined template set at all. To evaluate their detection performance, we test the methods using simulated and real data sets. Experiential results show that the two proposed methods, relative to the time-frequency-matched filter, can more accurately detect speech signals and other simulated signals in the presence of coloured Gaussian noise. Results also show that all time-frequency methods outperform the classical time-domain-matched filter for both simulated and real signals, thus demonstrating the utility of the time-frequency detection approach.
    DOI/handle
    http://dx.doi.org/10.1155/2011/193797
    http://hdl.handle.net/10576/31942
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features 

      Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)
      With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ...
    • Thumbnail

      Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review 

      Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)
      This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...
    • Thumbnail

      Signal content estimation based on the short-term time-frequency Rényi entropy of the S-method time-frequency distribution 

      Saulig, N.; Sucic, V.; Stanković, S.; Orović, I.; Boashash, B. (2012 , Conference)
      A key characteristic of a nonstationary signal, when analyzed in the time-frequency domain, is the signal complexity, quantified as the number of components in the signal. This paper describes a method for the estimation ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video