• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms

    Thumbnail
    التاريخ
    2021
    المؤلف
    Rahman A.
    Chowdhury M.E.H.
    Khandakar A.
    Kiranyaz, Mustafa Serkan
    Zaman K.S.
    Reaz M.B.I.
    Islam M.T.
    Ezeddin M.
    Kadir M.A.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Electroencephalography (EEG) based biometric systems are gaining attention for their anti-spoofing capability but lack accuracy due to signal variability at different psychological and physiological conditions. On the other hand, keystroke dynamics-based systems achieve very high accuracy but have low anti-spoofing capability. To address these issues, a novel multimodal biometric system combining EEG and keystroke dynamics is proposed in this paper. A dataset was created by acquiring both keystroke dynamics and EEG signals simultaneously from 10 users. Each user participated in 500 trials at 10 different sessions (days) to replicate real-life signal variability. A machine learning classification pipeline is developed using multi-domain feature extraction (time, frequency, time-frequency), feature selection (Gini impurity), classifier design, and score level fusion. Different classifiers were trained, validated, and tested for two different classification experiments-personalized and generalized. For identification and authentication, 99.9% and 99.6% accuracies are achieved, respectively for the Random Forest classifier in 5 fold cross-validation. These results outperform the individual modalities with a significant margin (5%). We also developed a binary template matching-based algorithm, which gives 93.64% accuracy 6X faster. The proposed method can be considered secure and reliable for any kind of biometric identification and authentication.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112145604&doi=10.1109%2fACCESS.2021.3092840&partnerID=40&md5=58ea2f01e76c7d265493fc868c120fe6
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3092840
    http://hdl.handle.net/10576/30596
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video