• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Progressive Operational Perceptrons with Memory

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020
    المؤلف
    Tran D.T.
    Kiranyaz, Mustafa Serkan
    Gabbouj M.
    Iosifidis A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Generalized Operational Perceptron (GOP) was proposed to generalize the linear neuron model used in the traditional Multilayer Perceptron (MLP) by mimicking the synaptic connections of biological neurons showing nonlinear neurochemical behaviours. Previously, Progressive Operational Perceptron (POP) was proposed to train a multilayer network of GOPs which is formed layer-wise in a progressive manner. While achieving superior learning performance over other types of networks, POP has a high computational complexity. In this work, we propose POPfast, an improved variant of POP that signicantly reduces the computational complexity of POP, thus accelerating the training time of GOP networks. In addition, we also propose major architectural modications of POPfast that can augment the progressive learning process of POP by incorporating an information preserving, linear projection path from the input to the output layer at each progressive step. The proposed extensions can be interpreted as a mechanism that provides direct information extracted from the previously learned layers to the network, hence the term ?memory?. This allows the network to learn deeper architectures and better data representations. An extensive set of experiments in human action, object, facial identity and scene recognition problems demonstrates that the proposed algorithms can train GOP networks much faster than POPs while achieving better performance compared to original POPs and other related algorithms.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075527604&doi=10.1016%2fj.neucom.2019.10.079&partnerID=40&md5=ac6224a30da2a962735a7d9633506701
    DOI/handle
    http://dx.doi.org/10.1016/j.neucom.2019.10.079
    http://hdl.handle.net/10576/30610
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video