1D Convolutional Neural Networks Versus Automatic Classifiers for Known LPI Radar Signals under White Gaussian Noise
Abstract
In this study we analyze the signal classification performances of various classifiers for deterministic signals under the additive White Gaussian Noise (WGN) in a wide range of signal to noise ratio (SNR) levels (-40dB to +20dB). The traditional electronic support measure (ESM) systems require high SNR for radar signal classification. LPI (low probability of intercept) radar signals that are received by ESM systems are usually corrupted by noise. So, we demonstrate through extensive simulations that it is possible to achieve high classification performance at low SNR levels providing that the underlying radar signals are known in advance. MF bank classifier, 1D Convolutional Neural Networks (CNNs) and the minimum distance classifier using spectral-domain features (the skewness, the kurtosis, and the energy of the dominant frequency) have been derived for the radar signal classification and their performances have been compared with each other and with the optimal classifier.
Collections
- Electrical Engineering [2685 items ]
Related items
Showing items related by title, author, creator and subject.
-
A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features
Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ... -
A diversity compression and combining technique based on channel shortening for cooperative networks
Hussain S.I.; Alouini M.-S.; Hasna , Mazen ( IEEE , 2012 , Article)The cooperative relaying process with multiple relays needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems ... -
Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review
Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...