• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron

    Thumbnail
    View/Open
    vaccines-10-00743-v2.pdf (12.82Mb)
    Date
    2022-05
    Author
    Vogt, Anne-Cathrine
    Augusto, Gilles
    Martina, Byron
    Chang, Xinyue
    Nasrallah, Gheyath
    Speiser, Daniel
    Vogel, Monique
    Bachmann, Martin
    Mohsen, Mona
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this report, we mechanistically reveal how the Variant of Concern (VOC) SARS-CoV-2 Omicron (B.1.1.529) escapes neutralizing antibody responses, by physio-chemical characterization of this variant in comparison to the wild-type Wuhan and the Delta variant (B.1.617.2). Convalescent sera, as well as sera obtained from participants who received two or three doses of mRNA vaccines (Moderna-mRNA-1273® or Pfizer-BNT162b2®), were used for comparison in this study. Our data demonstrate that both Delta, as well as Omicron variants, exhibit a higher affinity for the receptor ACE2, facilitating infection and causing antibody escape by receptor affinity (affinity escape), due to the reduced ability of antibodies to compete with RBD-receptor interaction and virus neutralization. In contrast, only Omicron but not the Delta variant escaped antibody recognition, most likely because only Omicron exhibits the mutation at E484A, a position associated with reduced recognition, resulting in further reduced neutralization (specificity escape). Nevertheless, the immunizations with RNA-based vaccines resulted in marked viral neutralization in vitro for all strains, compatible with the fact that Omicron is still largely susceptible to vaccination-induced antibodies, despite affinity- and specificity escape.
    DOI/handle
    http://dx.doi.org/10.3390/vaccines10050743
    http://hdl.handle.net/10576/31475
    Collections
    • Biomedical Sciences [‎819‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video