• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone

    No Thumbnail [120x130]
    Date
    2020
    Author
    Alshuiael S.M.
    Al-Ghouti M.A.
    Metadata
    Show full item record
    Abstract
    In this study, activated carbons prepared from the green and black olive stone (green OSAC and black OSAC) were used as adsorbents to investigate their removal efficiencies for oxidation products and polar compounds from used sunflower and corn cooking oils. The degree of oxidation level and polar compounds were evaluated using Fourier transform infrared (FTIR) with the principal component analysis and ultra-performance liquid chromatography. Two FTIR absorption peaks were used for the oil evaluation, namely 3007?3009 cm-1, which is related to C-H symmetric stretching vibration of the cis double bonds, and ~1743 cm-1, which is related to = CH and ester carbonyl stretching vibration of the functional groups of the triglycerides, C = O. The principal component analysis results showed significant variations in the oxidation level of the sunflower and the corn oils occurred after consecutive heating and French fries frying for 10 days. The oxidation products that are adsorbed on the surface of the OSAC forms �-complexes with the C = C parts of the OSAC system. It can be concluded that the prepared adsorbents can be promising, efficient, economically effective, and environmentally friendly alternative adsorbents for oil treatment applications. ? 2020 Alshuiael, Al-Ghouti. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085287073&doi=http://dx.doi.org/10.1371%2fjournal.pone.0232997&partnerID=40&md5=a5ce61a15fe438bb1f1643ef1735c531
    DOI/handle
    http://dx.doi.org/10.1371/journal.pone.0232997
    http://hdl.handle.net/10576/31786
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail