• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ENERGY-EFFICIENT USER-EDGE ASSOCIATION AND RESOURCE ALLOCATION IN IOT-BASED HIERARCHICAL FEDERATED LEARNING

    Thumbnail
    عرض / فتح
    Hassan Saadat_ OGS Approved Thesis.pdf (4.424Mb)
    التاريخ
    2022-06
    المؤلف
    SAADAT, HASSAN ABDULRAHMAN
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The proliferation of data as part of the Internet of Things (IoT) systems needs to be efficiently utilized while respecting data privacy and scalability. Edge computing is an emerging paradigm that mandates efficient processing of local data, close to where data is being collected. Such paradigm has motivated enormous research that merges computation and communication resources to explore many trade-offs that address heterogeneity of the IoT devices, while taking care of both scalability and data privacy. Federated learning (FL) is a distributed learning paradigm combining edge computing with artificial intelligence techniques. FL, compared to centralized learning (CL), preserves the data privacy of, and reduces the communication energy consumption by IoT devices, by requiring them to share locally trained machine learning models with the cloud rather than their private raw data. Hierarchical federated learning (HFL) improves FL by deploying a layer of edges that are responsible for multiple intermediate model aggregation rounds before the global aggregation is performed on the cloud. The HFL configuration alongside efficient user-edge association and resource allocation ensure more energy and communication efficient, and skewed-data robust learning scheme compared to FL. In this thesis, we assess the learning performance of the HFL framework while respecting IoT devices' limitations, such as energy budget, computational power, and storage space. First, HFL is evaluated in terms of learning performance and non-identically and independently distributed (non-iid) data handling by implementing an intrusion detection system (IDS) using the NSL-KDD dataset. Then, we formulate and solve a communication energy minimization problem that performs optimal client-edge association and resource allocation. We also implement an alternative less complex solution leveraging reinforcement learning (RL) that provides a fast user-edge association and resource allocation response in highly dynamic HFL networks. The proposed solutions are compared with several state-of-the-art client-edge association techniques, leveraging MNIST dataset. Moreover, we study the trade-off between minimizing the per-round energy consumption and Kullback-Leibler divergence (KLD) of the data distribution, and its effect on the total energy consumption.
    DOI/handle
    http://hdl.handle.net/10576/32159
    المجموعات
    • الحوسبة [‎112‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Deep Reinforcement Learning for Autonomous Navigation on Duckietown Platform: Evaluation of Adversarial Robustness 

      Hosseini, Abdullah; Houti, Saeid; Qadir, Junaid ( IEEE , 2023 , Conference)
      Self-driving cars have gained widespread attention in recent years due to their potential to revolutionize the transportation industry. However, their success critically depends on the ability of reinforcement learning ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video