• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Pharmacy
  • Master in Pharmacy
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Pharmacy
  • Master in Pharmacy
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Cellular Interplay Between Na+/H+ Exchanger Isoform I and Osteopontin in Cardiac Hypertrophy

    Thumbnail
    View/Open
    Thesis for Degree of Master of Science (18.97Mb)
    Date
    2014-01-21
    Author
    Abdelaziz, Iman Ahmed
    Metadata
    Show full item record
    Abstract
    The Na+/H+ exchanger-1 (NHE1) is a ubiquitously expressed housekeeping glycoprotein that functions to regulate intracellular pH. Enhanced expression/activity of NHE1 has been implicated in cardiac hypertrophy (CH). Recently, Transgenic mice expressing active-NHE1 demonstrated a>1500-fold increase in osteopontin (OPN) gene expression. OPN, a component of the extracellular matrix, has also been implicated in CH. In our study, upregulation of NHE1 in cardiomyocytes resulted in a significant increase in OPN protein expression (342.7%±69.22%). To determine whether OPN contributes to the hypertrophic effects of NHE1 during CH, cardiomyocytes were infected with active NHE1 in the presence and absence of OPN, or a silencing RNA (siRNA). CH was assessed by measuring cell area, protein content and atrial natriuretic peptide (ANP) mRNA. Overexpression of NHE1 and OPN in cardiomyocytes significantly increased cell area (158.4±3.59% of control); this was significantly reduced in the presence of OPN-siRNA (68.5±0.24% vs. 190.9±8.66% NHE1-infected). Protein content and ANP mRNA expression were also significantly increased in NHE1-infected cardiomyocytes, however they were significantly abrogated in the presence of OPN-siRNA (87.8±12.58% vs. 136.8±11% NHE1-infected) and (64.6±19.9% vs. 247.7±30.81% NHE1-infected). OPN appeared to contribute to NHE1-induced CH independent of extracellular-signal-regulated kinases, p90-ribosomal-S6 kinase and protein kinase B (Akt). Interestingly, NHE1 expression and activity in cardiomyocytes infected with NHE1 and OPN were significantly enhanced (636.5±128.75% of control) and (163.1±19.49% vs. 114.7±9.48% NHE1-infected). This was significantly abolished in the presence of siRNA-OPN (20.2 fold decrease±0.12 of control) and (68.5±0.24% vs. 586.5±103.54% NHE1-infected). Moreover, cleavage of OPN was enhanced in cardiomyocytes infected with both NHE1 and OPN, which was significantly reduced in the presence of siRNA OPN. Our study is the first to demonstrate a two-way cross talk between NHE1 and OPN in CH in vitro. Our findings demonstrate that NHE1 upregulates OPN in cardiomyocytes, which in turn regulates NHE1 expression/activity and contributes to the NHE1-induced hypertrophic response. Our study highlights OPN as a potential therapeutic target to reverse NHE1-induced CH and activity, one which maybe more beneficial than directly inhibiting NHE1.
    DOI/handle
    http://hdl.handle.net/10576/3321
    Collections
    • Master in Pharmacy [‎62‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video