• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional linear models for interval-valued data

    Thumbnail
    Date
    2022-01-01
    Author
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel Salam G.
    Metadata
    Show full item record
    Abstract
    Aggregation of large databases in a specific format is a frequently used process to make the data easily manageable. Interval-valued data is one of the data types that is generated by such an aggregation process. Using traditional methods to analyze interval-valued data results in loss of information, and thus, several interval-valued data models have been proposed to gather reliable information from such data types. On the other hand, recent technological developments have led to high dimensional and complex data in many application areas, which may not be analyzed by traditional techniques. Functional data analysis is one of the most commonly used techniques to analyze such complex datasets. While the functional extensions of much traditional statistical techniques are available, the functional form of the interval-valued data has not been studied well. This article introduces the functional forms of some well-known regression models that take interval-valued data. The proposed methods are based on the function-on-function regression model, where both the response and predictor/s are functional. Through several Monte Carlo simulations and empirical data analysis, the finite sample performance of the proposed methods is evaluated and compared with the state-of-the-art.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078499799&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/03610918.2020.1714662
    http://hdl.handle.net/10576/33402
    Collections
    • Mathematics, Statistics & Physics [‎789‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video