• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly exfoliated Ti3C2T: XMXene nanosheets atomically doped with Cu for efficient electrochemical CO2reduction: An experimental and theoretical study

    Thumbnail
    Date
    2022-01-28
    Author
    Eid, Kamel
    Lu, Qingqing
    Abdel-Azeim, Safwat
    Soliman, Ahmed
    Abdullah, Aboubakr M.
    Abdelgwad, Ahmed M.
    Forbes, Roy P.
    Ozoemena, Kenneth I.
    Varma, Rajender S.
    Shibl, Mohamed F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ti3C2Tx MXene nanostructures have garnered attention for various catalytic applications due to their built-in electronic properties. Herein, we rationally design highly exfoliated two-dimensional Ti3C2Tx nanosheets (Tx = O, OH, and F) doped with Cu (denoted as Cu/Ti3C2Tx) for the electrochemical CO2 reduction reaction (CO2RR). The fabrication process entails the selective chemical etching of Ti3AlC2 followed by the delamination thereof under ultrasonic treatment and subsequent mixing with a Cu precursor to allow in situ doping. The resultant Cu/Ti3C2Tx are highly exfoliated nanosheets with a surface area of 46 m2 g-1 and are uniformly doped with Cu atoms (1.04 wt%). The CO2RR current density of Cu/Ti3C2Tx (-1.08 mA cm-2) was 3.6 times higher than that of Ti3C2Tx (-0.3 mA cm-2) besides a lower onset reduction potential and Tafel slope, and higher stability, due to the greater surface area, electronic effect, and quicker charge transfer on Cu/Ti3C2Tx. The formic acid (HCOOH) faradaic efficiency on Cu/Ti3C2Tx (58.1%) was 3-fold higher than that on Ti3C2Tx (18.7%). Based on density functional theory (DFT) simulation, Cu-doping induces polarized sites with high electron density, allowing the CO2RR path through the ∗HCOOH intermediate to form formic acid (HCOOH). The study presented here will open new pathways for using Ti3C2Tx doped with various metals for the CO2RR. This journal is
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123723053&origin=inward
    DOI/handle
    http://dx.doi.org/10.1039/d1ta09471h
    http://hdl.handle.net/10576/34172
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video