• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlling the Interfacial Charge Polarization of MOF-Derived 0D–2D vdW Architectures as a Unique Strategy for Bifunctional Oxygen Electrocatalysis

    Thumbnail
    Date
    2022-01-26
    Author
    Ahsan, Md Ariful
    He, Tianwei
    Eid, Kamel
    Abdullah, Aboubakr M.
    Sanad, Mohamed Fathi
    Aldalbahi, Ali
    Alvarado-Tenorio, Bonifacio
    Du, Aijun
    Puente Santiago, Alain R.
    Noveron, Juan C.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal–organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO2 nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO2 nanohybrids. X-ray photoelectron spectroscopy (XPS) and theoretical studies revealed the key role of the synergistic couple effect of boron (B) and nitrogen (N) in interfacial electronic polarization. The BCN/ZrO2 nanohybrid showed excellent bifunctional electrocatalytic activity, delivering an overpotential (η10) of 301 mV to reach a current density of 10 mA–cm–2 for the OER process and a half-wave potential (E1/2) of 0.85 V vs reversible hydrogen electrode (RHE) for the ORR process, which are comparable to the state-of-the-art LD nanohybrids. Furthermore, BCN/ZrO2 also showed competitive performances for water-splitting and zinc–air battery devices. This work establishes a new route to fabricate highly efficient multifunctional electrocatalysts by tuning the electronic polarization properties of 0D–2D electrochemical interfaces.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123359338&origin=inward
    DOI/handle
    http://dx.doi.org/10.1021/acsami.1c17283
    http://hdl.handle.net/10576/34173
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video