• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process

    Thumbnail
    View/Open
    c7ra04148a.pdf (3.624Mb)
    Date
    2017
    Author
    Matli, Penchal Reddy
    Ubaid, Fareeha
    Shakoor, Rana Abdul
    Parande, Gururaj
    Manakari, Vyasaraj
    Yusuf, Moinuddin
    Amer Mohamed, Adel Mohamed
    Gupta, Manoj
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, nano-sized Si3N4 (0, 0.5, 1.0 and 1.5 vol%)/Al composites were fabricated using a powder metallurgy method involving microwave sintering technique followed by hot extrusion. The influence of Si3N4 content on the structural, mechanical and thermal behaviour of Al–Si3N4 nanocomposites was systematically investigated. Electron microscopy examination reveals the uniform distribution of hard Si3N4 nanoparticles in the soft Al matrix. The compressive and tensile strengths of Al composites increased with the increase of Si3N4 content while the ductility decreased. The thermal expansion coefficient of the Al composite decreased with the progressive addition of hard Si3N4 nanoparticles. Overall, hot extruded Al–1.5 vol% Si3N4 nanocomposites exhibited the best combination of tensile, compressive, hardness, Young's modulus and thermal properties of 191 ± 4 MPa, 412 ± 3 MPa, 16.3 ± 0.8 GPa, 94 ± 2 GPa and 19.3 μ K−1, respectively. Tensile tests performed at 200 °C revealed that the tensile strength reduced by ∼35% when compared to the strength at room temperature. The strength, however, was still higher compared to that of the pure Al at 200 °C. The major enhancement in the strength of the nanocomposites is primarily attributed to the presence of uniformly distributed nano-sized Si3N4 nanoparticles in the Al matrix.
    DOI/handle
    http://dx.doi.org/10.1039/c7ra04148a
    http://hdl.handle.net/10576/34846
    Collections
    • Center for Advanced Materials Research [‎1569‎ items ]
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video