• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Reinforcement Learning for Network Selection over Heterogeneous Health Systems

    Thumbnail
    التاريخ
    2022-01-01
    المؤلف
    Chkirbene, Zina
    Abdellatif, Alaa Awad
    Mohamed, Amr
    Erbad, Aiman
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Smart health systems improve our quality oflife by integrating diverse information and technologies into health and medical practices. Such technologies can significantly improve the existing health services. However, reliability, latency, and limited networks resources are among the many challenges hindering the realization of smart health systems. Thus, in this paper, we leverage the dense heterogeneous network (HetNet) architecture over 5 G network to enhance network capacity and provide seamless connectivity for smart health systems. However, network selection in HetNets is still a challenging problem that needs to be addressed. Inspired by the success of Deep Reinforcement Learning (DRL) in solving complicated control problems, we present a novel DRL model for solving the network selection problem with the aim of optimizing medical data delivery over heterogeneous health systems. Specifically, we formulate an optimization model that integrates the network selection problem with adaptive compression, at the network edge, to minimize the transmission energy consumption and latency, while meeting diverse applications' Quality of service (QoS) requirements. Our experimental results show that the proposed DRL-based model could minimize the energy consumption and latency compared to the greedy techniques, while meeting different users' demands in high dynamics environments.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100859447&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3058037
    http://hdl.handle.net/10576/35283
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video