عرض بسيط للتسجيلة

المؤلفChkirbene, Zina
المؤلفAbdellatif, Alaa Awad
المؤلفMohamed, Amr
المؤلفErbad, Aiman
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-10-23T08:47:09Z
تاريخ النشر2022-01-01
اسم المنشورIEEE Transactions on Network Science and Engineering
المعرّفhttp://dx.doi.org/10.1109/TNSE.2021.3058037
الاقتباسChkirbene, Z., Abdellatif, A. A., Mohamed, A., Erbad, A., & Guizani, M. (2021). Deep reinforcement learning for network selection over heterogeneous health systems. IEEE Transactions on Network Science and Engineering, 9(1), 258-270.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100859447&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35283
الملخصSmart health systems improve our quality oflife by integrating diverse information and technologies into health and medical practices. Such technologies can significantly improve the existing health services. However, reliability, latency, and limited networks resources are among the many challenges hindering the realization of smart health systems. Thus, in this paper, we leverage the dense heterogeneous network (HetNet) architecture over 5 G network to enhance network capacity and provide seamless connectivity for smart health systems. However, network selection in HetNets is still a challenging problem that needs to be addressed. Inspired by the success of Deep Reinforcement Learning (DRL) in solving complicated control problems, we present a novel DRL model for solving the network selection problem with the aim of optimizing medical data delivery over heterogeneous health systems. Specifically, we formulate an optimization model that integrates the network selection problem with adaptive compression, at the network edge, to minimize the transmission energy consumption and latency, while meeting diverse applications' Quality of service (QoS) requirements. Our experimental results show that the proposed DRL-based model could minimize the energy consumption and latency compared to the greedy techniques, while meeting different users' demands in high dynamics environments.
اللغةen
الناشرIEEE Computer Society
الموضوعAdaptive compression
Deep reinforcement learning
Heterogeneous networks
Remote monitoring
Smart health
العنوانDeep Reinforcement Learning for Network Selection over Heterogeneous Health Systems
النوعArticle
الصفحات258-270
رقم العدد1
رقم المجلد9
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة