• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data-Driven Optimization for Dynamic Shortest Path Problem Considering Traffic Safety

    Thumbnail
    Date
    2022-04-15
    Author
    Jiang, Shan
    Zhang, Yilun
    Liu, Ran
    Jafari, Mohsen
    Kharbeche, Mohamed
    Metadata
    Show full item record
    Abstract
    Traffic congestion is an inescapable problem that frustrates drivers in megacities. Although there is hardly a way to eliminate the congestion, it is possible to mitigate the impact through predictive methods. This paper develops a data-driven optimization approach for the dynamic shortest path problems (DSPP), considering traffic safety for urban navigations. The dynamic risk scores and travel times at different times and locations are estimated by the Safe Route Mapping (SRM) methodology and Long Short-Term Memory (LSTM) with Autoencoder, respectively, where possible variations in the future are considered. The DSPP is formulated as a mixed-integer linear programming problem under risk constraints to minimize the total travel cost, defined as the weighted sum of distance and travel time. To improve the efficiency of the DSPP, we design an improved tabu search with alternative initial-solution algorithms to accommodate various problem scales. Moreover, subgraph and self-adaptive insertion techniques are adopted as acceleration strategies to enhance computational efficiency further. Numerical experiments investigate the computational performance and the solution quality of our algorithm. The result shows satisfactory solution quality and computational efficiency with the proposed acceleration strategies compared to the CPLEX solver, a label-setting algorithm, and a state-of-the-art algorithm. Our algorithm can also compete with Google Maps regarding the travel cost in a real network in Manhattan, NY, USA, which is promising for Urban Navigations.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128671882&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2022.3165757
    http://hdl.handle.net/10576/35337
    Collections
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video