• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data-Driven Optimization for Dynamic Shortest Path Problem Considering Traffic Safety

    No Thumbnail [120x130]
    التاريخ
    2022-04-15
    المؤلف
    Jiang, Shan
    Zhang, Yilun
    Liu, Ran
    Jafari, Mohsen
    Kharbeche, Mohamed
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Traffic congestion is an inescapable problem that frustrates drivers in megacities. Although there is hardly a way to eliminate the congestion, it is possible to mitigate the impact through predictive methods. This paper develops a data-driven optimization approach for the dynamic shortest path problems (DSPP), considering traffic safety for urban navigations. The dynamic risk scores and travel times at different times and locations are estimated by the Safe Route Mapping (SRM) methodology and Long Short-Term Memory (LSTM) with Autoencoder, respectively, where possible variations in the future are considered. The DSPP is formulated as a mixed-integer linear programming problem under risk constraints to minimize the total travel cost, defined as the weighted sum of distance and travel time. To improve the efficiency of the DSPP, we design an improved tabu search with alternative initial-solution algorithms to accommodate various problem scales. Moreover, subgraph and self-adaptive insertion techniques are adopted as acceleration strategies to enhance computational efficiency further. Numerical experiments investigate the computational performance and the solution quality of our algorithm. The result shows satisfactory solution quality and computational efficiency with the proposed acceleration strategies compared to the CPLEX solver, a label-setting algorithm, and a state-of-the-art algorithm. Our algorithm can also compete with Google Maps regarding the travel cost in a real network in Manhattan, NY, USA, which is promising for Urban Navigations.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128671882&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2022.3165757
    http://hdl.handle.net/10576/35337
    المجموعات
    • السلامة المرورية [‎163‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail