• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-Way MR-Forest Based Growing Path Classification for Malignancy Estimation of Pulmonary Nodules

    Thumbnail
    التاريخ
    2021-10-01
    المؤلف
    Zhu, Hongbo
    Han, Guangjie
    Lin, Chuan
    Wang, Min
    Guizani, Mohsen
    Hou, Jianxia
    Xing, Wei
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper proposes a two-way multi-ringed forest (TMR-Forest) to estimating the malignancy of the pulmonary nodules for false positive reduction (FPR). Based on our previous work of deep decision framework, named MR-Forest, we generate a growing path mode on predefined pseudo-timeline of L time slots to build pseudo-spatiotemporal features. It synchronously works with FPR based on MR-Forest to help predict the labels from a dynamic perspective. Concretely, Mask R-CNN is first used to recommend the bounding boxes of ROIs and classify their pathological features. Afterward, hierarchical attribute matching is introduced to obtain the input ROIs' attribute layouts and select the candidates for their growing path generation. The selected ROIs can replace the fixed-sized ROIs' fitting results at different time slots for data augmentation. A two-stage counterfactual path elimination is used to screen out the input paths of the cascade forest. Finally, a simple label selection strategy is executed to output the predicted label to point out the input nodule's malignancy. On 1034 scans of the merged dataset, the framework can report more accurate malignancy labels to achieve a better CPM score of 0.912, which exceeds those of MR-Forest and 3DDCNNs about 2.8% and 4.7%, respectively.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101447497&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JBHI.2021.3057627
    http://hdl.handle.net/10576/35581
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video