• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3D Beamforming Based on Deep Learning for Secure Communication in 5G and beyond Wireless Networks

    Thumbnail
    عرض / فتح
    3D Beamforming Based on Deep Learning for Secure Communication in 5G and beyond Wireless Networks.pdf (1.327Mb)
    التاريخ
    2021-01-01
    المؤلف
    Yang, Helin
    Lam, Kwok Yan
    Nie, Jiangtian
    Zhao, Jun
    Garg, Sahil
    Xiao, Liang
    Xiong, Zehui
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Three-dimensional (3D) beamforming is a potential technique to enhance communication security of new generation networks such as 5G and beyond. However, it is difficult to achieve optimal beamforming due to the challenges of nonconvex optimization problem and imperfect channel state information (CSI). To tackle this problem, this paper proposes a novel deep learning-based 3D beamforming scheme, where a deep neural network (DNN) is trained to optimize the beamforming design for wireless signals in order to guard against eavesdropper under the imperfect CSI. With our approach, the system is capable of training the DNN model offline, and the trained model can then be adopted to instantaneously select the 3D secure beamforming matrix for achieving the maximum secrecy rate of the system, which is measured by the signal received by eavesdroppers outside the path of the beam. Simulation results demonstrate that the proposed solution outperforms the classical deep learning algorithm and 2D beamforming solution in terms of the secrecy rate and robust performance.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126134387&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/GCWkshps52748.2021.9681960
    http://hdl.handle.net/10576/36071
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video