• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DwaRa: A Deep Learning-Based Dynamic Toll Pricing Scheme for Intelligent Transportation Systems

    Thumbnail
    Date
    2020-11-01
    Author
    Shukla, Arpit
    Bhattacharya, Pronaya
    Tanwar, Sudeep
    Kumar, Neeraj
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    In Internet-of-Vehicles (IoV) ecosystems, intelligent toll gates (ITGs) connect nearby metropolitan cities through smart highways. At ITGs, existing solutions integrate blockchain (BC) and deep-learning schemes to leverage trusted and responsive analytics support for connected smart vehicles (CSVs) at ITGs. BC eliminates third-party intermediaries, and secures payments between vehicle owners (VO) and governing authorities (GA). Deep-Learning, on the other hand, facilitates accurate predictions for diverse and complex urban traffic conditions. However, due to fixed toll pricing schemes based on connected smart vehicles (CSV) type, VOs suffer from variable delays at different lanes due to dynamic congestion scenarios. To address the research gaps of such a fixed pricing schemes, we propose a BC-envisioned scheme DwaRa, that operates in three phases. In the first phase, future traffic is predicted based on Markov queues to balance the congestion at different lanes at ITGs efficiently. Then, we propose a novel spatially induced-long-short term memory (SI-LSTM) model to predict current traffic and weather based on historical repositories. Second, based on inputs by the Markov model, SI-LSTM, lane type, and vehicle type, a dynamic pricing algorithm is presented to improve the quality of experience (QoE) of the VO. Finally, based on dynamic price fixation between the VO and the GA, smart contracts (SCs) are executed and transactional data is secured through BC. The proposed scheme is compared against parameters like average mean-squared error (MSE), predicted traffic, scalability, interplanetary file system (IPFS) storage, computation (CC), and communication cost (CCM). At $n$ = 100 test samples, and arrival rate $\beta$ = 80, the obtained MSE is 0.0012, with a peak average value of 0.00526. The overall CC is 45.88 milliseconds (ms) and CCM is 53 bytes that indicate the proposed scheme efficacy against conventional approaches.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096238162&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2020.3022168
    http://hdl.handle.net/10576/36417
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video