• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Malware detection based on graph attention networks for intelligent transportation systems

    Thumbnail
    عرض / فتح
    electronics-10-02534-v2.pdf (344.8Kb)
    التاريخ
    2021
    المؤلف
    Catal, Cagatay
    Gunduz, Hakan
    Ozcan, Alper
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Intelligent Transportation Systems (ITS) aim to make transportation smarter, safer, reliable, and environmentally friendly without detrimentally affecting the service quality. ITS can face security issues due to their complex, dynamic, and non-linear properties. One of the most critical security problems is attacks that damage the infrastructure of the entire ITS. Attackers can inject malware code that triggers dangerous actions such as information theft and unwanted system moves. The main objective of this study is to improve the performance of malware detection models using Graph Attention Networks. To detect malware attacks addressing ITS, a Graph Attention Network (GAN)-based framework is proposed in this study. The inputs to this framework are the Application Programming Interface (API)-call graphs obtained from malware and benign Android apk files. During the graph creation, network metrics and the Node2Vec model are utilized to generate the node features. A GAN-based model is combined with different types of node features during the experiments and the performance is compared against Graph Convolutional Network (GCN). Experimental results demonstrated that the integration of the GAN and Node2Vec models provides the best performance in terms of F-measure and accuracy parameters and, also, the use of an attention mechanism in GAN improves the performance. Furthermore, node features generated with Node2Vec resulted in a 3% increase in classification accuracy compared to the features generated with network metrics. 2021 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/electronics10202534
    http://hdl.handle.net/10576/36778
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video