The effect of expanded graphite on the physical properties of conductive EVA/wax phase change blends for thermal energy storage
Abstract
A study of the morphology, dynamic mechanical, impact, and tensile properties of ethylene vinyl acetate copolymer (EVA)/expanded graphite (EG) and EVA/wax/EG composites is presented. The composites were prepared by melt blending. The EVA/EG composites showed ductile behavior, while brittle behavior was observed in the presence of wax. A finer dispersion of EG was observed in the matrix when wax was present. The storage modulus of the EVA/wax/EG composite was higher than that of the EVA/EG composite, which is ascribed to a better interaction between the EVA and the wax-covered EG that significantly reduced the EVA chain mobility. The composites showed a decrease in impact strength with increasing EG and wax contents. There was a significant difference in the elongation at break between the EVA/EG and EVA/wax/EG composites, and little change in Young's modulus of EVA in the presence of EG and with increasing EG content. However, Young's modulus of the EVA/wax blends increased in the presence of and with increasing EG content. In all the investigated samples containing EVA and wax, irrespective of the EG content, the stress at break decreased with an increase in wax content. POLYM. COMPOS., 2015. © 2015 Society of Plastics Engineers
Collections
- Center for Advanced Materials Research [1375 items ]