• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid Deep Learning-based Models for Crop Yield Prediction

    Thumbnail
    عرض / فتح
    Hybrid Deep Learning based Models for Crop Yield Prediction.pdf (1.783Mb)
    التاريخ
    2022
    المؤلف
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Predicting crop yield is a complex task since it depends on multiple factors. Although many models have been developed so far in the literature, the performance of current models is not satisfactory, and hence, they must be improved. In this study, we developed deep learning-based models to evaluate how the underlying algorithms perform with respect to different performance criteria. The algorithms evaluated in our study are the XGBoost machine learning (ML) algorithm, Convolutional Neural Networks (CNN)-Deep Neural Networks (DNN), CNN-XGBoost, CNN-Recurrent Neural Networks (RNN), and CNN-Long Short Term Memory (LSTM). For the case study, we performed experiments on a public soybean dataset that consists of 395 features including weather and soil parameters and 25,345 samples. The results showed that the hybrid CNN-DNN model outperforms other models, having an RMSE equal to 0.266, an MSE of 0.071, and an MAE of 0.199. The predictions of the model fit with an R2 of 0.87. The second-best result was achieved by the XGBoost model, which required less time to execute compared to the other DL-based models. 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
    DOI/handle
    http://dx.doi.org/10.1080/08839514.2022.2031823
    http://hdl.handle.net/10576/36801
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video