• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adversarial Attacks for Image Segmentation on Multiple Lightweight Models

    Thumbnail
    عرض / فتح
    Adversarial_Attacks_for_Image_Segmentation_on_Multiple_Lightweight_Models.pdf (2.075Mb)
    التاريخ
    2020-01-01
    المؤلف
    Kang, Xu
    Song, Bin
    Du, Xiaojiang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Due to the powerful ability of data fitting, deep neural networks have been applied in a wide range of applications in many key areas. However, in recent years, it was found that some adversarial samples easily fool the deep neural networks. These input samples are generated by adding a few small perturbations based on the original sample, making a very significant influence on the decision of the target model in the case of not being perceived. Image segmentation is one of the most important technologies in the medical image and automatic driving field. This paper mainly explores the security of deep neural network models based on the image segmentation tasks. Two lightweight image segmentation models on the embedded device suffered from the white-box attack by using local perturbations and universal perturbations. The perturbations are generated indirectly by a noise function and an intermediate variable so that the gradient of pixels can be propagated unlimitedly. Through experiments, we find that different models have different blind spots, and the adversarial samples trained for a single model have no transferability. In the end, multiple models are attacked by our joint learning. Finally, under the constraint of low perturbation, most of the pixels in the attacked area have been misclassified by both lightweight models. The experimental result shows that the proposed adversary is more likely to affect the performance of the segmentation model compared with the FGSM.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081060202&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.2973069
    http://hdl.handle.net/10576/37554
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video