• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Detection of Brain Tumor through Magnetic Resonance Images Using Convolutional Neural Network

    Thumbnail
    View/Open
    3365043.pdf (1.729Mb)
    Date
    2021-11-30
    Author
    Gull, Sahar
    Akbar, Shahzad
    Khan, Habib Ullah
    Metadata
    Show full item record
    Abstract
    Brain tumor is a fatal disease, caused by the growth of abnormal cells in the brain tissues. Therefore, early and accurate detection of this disease can save patient's life. This paper proposes a novel framework for the detection of brain tumor using magnetic resonance (MR) images. The framework is based on the fully convolutional neural network (FCNN) and transfer learning techniques. The proposed framework has five stages which are preprocessing, skull stripping, CNN-based tumor segmentation, postprocessing, and transfer learning-based brain tumor binary classification. In preprocessing, the MR images are filtered to eliminate the noise and are improve the contrast. For segmentation of brain tumor images, the proposed CNN architecture is used, and for postprocessing, the global threshold technique is utilized to eliminate small nontumor regions that enhanced segmentation results. In classification, GoogleNet model is employed on three publicly available datasets. The experimental results depict that the proposed method is achieved average accuracies of 96.50%, 97.50%, and 98% for segmentation and 96.49%, 97.31%, and 98.79% for classification of brain tumor on BRATS2018, BRATS2019, and BRATS2020 datasets, respectively. The outcomes demonstrate that the proposed framework is effective and efficient that attained high performance on BRATS2020 dataset than the other two datasets. According to the experimentation results, the proposed framework outperforms other recent studies in the literature. In addition, this research will uphold doctors and clinicians for automatic diagnosis of brain tumor disease.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122230069&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2021/3365043
    http://hdl.handle.net/10576/37602
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video