• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bidirectional Language Modeling: A Systematic Literature Review

    Thumbnail
    عرض / فتح
    6641832.pdf (1.815Mb)
    التاريخ
    2021-05-03
    المؤلف
    Shah Jahan, Muhammad
    Khan, Habib Ullah
    Akbar, Shahzad
    Umar Farooq, Muhammad
    Gul, Sarah
    Amjad, Anam
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In transfer learning, two major activities, i.e., pretraining and fine-tuning, are carried out to perform downstream tasks. The advent of transformer architecture and bidirectional language models, e.g., bidirectional encoder representation from transformer (BERT), enables the functionality of transfer learning. Besides, BERT bridges the limitations of unidirectional language models by removing the dependency on the recurrent neural network (RNN). BERT also supports the attention mechanism to read input from any side and understand sentence context better. It is analyzed that the performance of downstream tasks in transfer learning depends upon the various factors such as dataset size, step size, and the number of selected parameters. In state-of-the-art, various research studies produced efficient results by contributing to the pretraining phase. However, a comprehensive investigation and analysis of these research studies is not available yet. Therefore, in this article, a systematic literature review (SLR) is presented investigating thirty-one (31) influential research studies published during 2018-2020. Following contributions are made in this paper: (1) thirty-one (31) models inspired by BERT are extracted. (2) Every model in this paper is compared with RoBERTa (replicated BERT model) having large dataset and batch size but with a small step size. It is concluded that seven (7) out of thirty-one (31) models in this SLR outperforms RoBERTa in which three were trained on a larger dataset while the other four models are trained on a smaller dataset. Besides, among these seven models, six models shared both feedforward network (FFN) and attention across the layers. Rest of the twenty-four (24) models are also studied in this SLR with different parameter settings. Furthermore, it has been concluded that a pretrained model with a large dataset, hidden layers, attention heads, and small step size with parameter sharing produces better results. This SLR will help researchers to pick a suitable model based on their requirements.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106388570&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2021/6641832
    http://hdl.handle.net/10576/37684
    المجموعات
    • المحاسبة ونظم المعلومات [‎555‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video