• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Complexity of Deep Convolutional Neural Networks in Mobile Computing

    Thumbnail
    عرض / فتح
    3853780.pdf (1.290Mb)
    التاريخ
    2020-09-17
    المؤلف
    Naeem, Saad
    Jamil, Noreen
    Khan, Habib Ullah
    Nazir, Shah
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Neural networks employ massive interconnection of simple computing units called neurons to compute the problems that are highly nonlinear and could not be hard coded into a program. These neural networks are computation-intensive, and training them requires a lot of training data. Each training example requires heavy computations. We look at different ways in which we can reduce the heavy computation requirement and possibly make them work on mobile devices. In this paper, we survey various techniques that can be matched and combined in order to improve the training time of neural networks. Additionally, we also review some extra recommendations to make the process work for mobile devices as well. We finally survey deep compression technique that tries to solve the problem by network pruning, quantization, and encoding the network weights. Deep compression reduces the time required for training the network by first pruning the irrelevant connections, i.e., the pruning stage, which is then followed by quantizing the network weights via choosing centroids for each layer. Finally, at the third stage, it employs Huffman encoding algorithm to deal with the storage issue of the remaining weights.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092181597&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2020/3853780
    http://hdl.handle.net/10576/37761
    المجموعات
    • المحاسبة ونظم المعلومات [‎555‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video