• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الذكاء المعلوماتي
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الذكاء المعلوماتي
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Compressive sensing based electronic nose platform

    No Thumbnail [120x130]
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2017
    المؤلف
    Djelouat, Hamza
    Ait Si Ali, Amine
    Amira, Abbes
    Bensaali, Faycal
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Electronic nose (EN) systems play a significant role for gas monitoring and identification in gas plants. Using an EN system which consists of an array of sensors provides a high performance. Nevertheless, this performance is bottlenecked by the high system complexity incorporated with the high number of sensors. In this paper a new EN system is proposed using data sets collected from an in-house fabricated 4x4 tin-oxide gas array sensor. The system exploits the theory of compressive sensing (CS) and distributed compressive sensing (DCS) to reduce the storage capacity and power consumption. The obtained results have shown that compressing the transmitted data to 20% of its original size will preserve the information by achieving a high reconstruction quality. Moreover, exploiting DCS will maintain the same reconstruction quality for just 15% of the original size. This high quality of reconstruction is explored for classification using several classifiers such as decision tree (DT), K-nearest neighbour (KNN) and extended nearest neighbour (ENN) along with linear discrimination analysis (LDA) as feature reduction technique. CS-based reconstructed data has achieved a 95% classification accuracy. Furthermore, DCS-based reconstructed data achieved a 98.33% classification accuracy which is the same as using original data without compression. 2016 Elsevier Inc.
    DOI/handle
    http://dx.doi.org/10.1016/j.dsp.2016.10.006
    http://hdl.handle.net/10576/37831
    المجموعات
    • الذكاء المعلوماتي [‎98‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail